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Abstract
We extend our linear response description of materials with a strong ionic
component of the electronic structure, previously applied successfully to
the lattice dynamics, electron–phonon interaction and dielectric properties of
the high-temperature superconductors (HTSC), to SrTiO3 and BaTiO3 which
crystallize in the (perovskite) parent structure of the HTSC. Besides phonon-
induced localized polarization processes at the ions in the form of dipole
fluctuations, calculated with a modified Sternheimer method, which are typical
for the ionic component of binding, on-site and off-site charge fluctuations
modelling a charge flow along the Ti–O axis prove to be important. The
latter delocalized polarization processes related to the covalent component
of binding are introduced in our modelling to simulate changes of the
hybridization between O 2p and Ti 3d orbitals under atomic displacements.
Altogether, we obtain a reasonable description of the phonon dispersion and the
dielectric properties of both materials, including the anomalous Born effective
charges and the macroscopic dielectric constant. Moreover, comparative
investigations within our microscopic model provide physical insight into the
ferroelectric (FE) phase transition of BaTiO3 and the antiferrodistortive (AFD)
transition of SrTiO3.

1. Introduction

In this paper we investigate the phonon dynamics, the structural instabilities, via soft modes,
and the dielectric properties of the perovskite oxides SrTiO3 and BaTiO3. In particular, the
lattice instabilities found in the perovskite structure, which is the parent structure of the
high-temperature superconductors (HTSC), are responsible for many of their characteristic
properties such as the temperature dependent ferroelectric (FE) and antiferrodistortive (AFD)
phase transitions.
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http://stacks.iop.org/JPhysCM/16/5955


5956 T Trautmann and C Falter

First-principles phonon calculations for the perovskites away from the zone centre,
using density-functional perturbation theory (DFPT), have been performed for only a few
compounds; see [1] and references therein. Here, we use for the calculation of the complete
phonon dispersion and also the other quantities presented in this paper a previously proposed
approximate modelling of the linear response and lattice dynamics, already applied successfully
to the HTSC [2–5]. While this formalism is not fully ab initio and some analytic input is
needed, it allows for physically motivated approximations on a microscopic level and for the
investigation of their effects on the calculated properties. Also, the numerical calculations
are far less time-consuming than for a full ab initio procedure in the framework of density-
functional theory (DFT). Moreover, an extension to a non-adiabatic charge response, which
has been proved to be essential for the investigation of the c-axis charge response coupled to
the lattice in the HTSC [6], can be implemented directly. This is not possible for investigations
in the framework of DFT which rely on the adiabatic approximation. The latter approximation,
however, is sufficient for the calculated properties of the materials studied in this paper.

In our previous calculations of the lattice dynamics, electron–phonon interaction (EPI)
and dielectric properties of the HTSC two basic electronic polarization mechanisms have
been found to be important. These arise from the prevailing localized electronic structure of
that predominant ionic compounds. Accordingly we find that phonon-induced polarization
processes via ionic charge fluctuations, CF, are essential in particular for the ions in the CuO
plane which lead to a charge transfer between these ions (delocalized mechanism). On the
other hand, predominantly in the ionic layers, anisotropic dipole fluctuations, DF, localized
at the ions become important (localized mechanism). In the present paper the effects of both
of these polarization mechanisms and their interplay in generating the total polarization under
atomic displacements are studied by calculating the phonon dispersion, the Born (transverse)
effective charges ZT, the high-frequency dielectric constant ε∞ and, of course, the dynamical
lattice instabilities in SrTiO3 and BaTiO3.

What has been discussed in the literature in context with the calculation of the anomalous
large transverse charges Z T of the ABO3 perovskite compounds is that these dynamical charges
are due in principle to both kinds of polarization mechanisms, localized as well as delocalized;
see [7] and references therein. This has been achieved by a band-by-band decomposition
of Z T performed in DFT and shows that when the orbitals which interact are located on
different atoms a substantial contribution to the anomalous charges is obtained via off-site
hybridization. In this case the changes of hybridization under atomic displacements can be
visualized as a charge transfer between the corresponding ions. In our modelling, such a
delocalized contribution to the polarizability is described by the displacement-induced CF,
while the remaining changes of hybridization related to the interacting orbitals on the same
ion, looking like a local polarizability, are modelled in our approach by the ionic DF. Note in
this context that an empirical model such as the shell model, which does not explicitly include
transfer of charges and covalency like the bond orbital model (BOM) [8], is able to reproduce
correctly the magnitude of Z T [9]. However, in empirical models, fitting to the experiments is
always done, e.g. to reproduce correctly the split between the longitudinal optic (LO) and the
transverse optic (TO) modes at the centre of the Brillouin zone. In this way, for example in the
shell model, covalency effects are implicitly introduced. Thus, quite generally in empirical
modelling no suitable reference system can be defined as a starting point from which the
relevant polarization processes can be studied explicitly and unambiguously. So, what may
show up as an unusual large localized dipole polarizability of the oxygen ions in the shell
model may appear as a delocalized charge transfer between the Ti and O ions in the BOM.
In reality both kinds of polarization processes will be excited under atomic displacements in
the crystal and we discuss in this paper in terms of CF and DF explicitly their influence not
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only on the transverse charges and the macroscopic dielectric constant, but also in detail on
the lattice dynamics and in particular on the lattice instabilities, using an ab initio rigid ion
model (RIM) as an unprejudiced reference system, which does not include the polarization
effects to be investigated.

In section 2 we briefly outline the theory and modelling of the density response, lattice
dynamics and dielectric properties previously developed. Section 3 contains the model
calculations for the phonon dispersion, lattice instabilities and dielectric properties of SrTiO3

and BaTiO3. Starting with the RIM, the influences of CF and DF are investigated. Finally, from
a simultaneous comparison of the calculated results for the phonon frequencies, the transverse
charges and the dielectric constant with the experimental data, an optimal modelling of the
interplay of localized polarization effects in terms of DF and delocalized polarization effects
via CF is proposed within our approach. Section 4 summarizes our results.

2. Outline of the theory and modelling

In section 2 a review of the theory and modelling will be given. Such a microscopic
linear response approach is well suited for systems with a strong component of ionic
binding and has been applied successfully to classical ionic crystals and high-temperature
superconductors (HTSC) in the past. Details of the method can be found in [2, 10].

2.1. The reference system—rigid charge response

In order to investigate explicitly the influence of non-rigid electronic charge (CF) and dipole
fluctuations (DF) on the phonon modes and dielectric properties an unbiased reference system
without such electronic degrees of freedom is needed. This is achieved by an ab initio rigid
ion model (RIM).

The basic assumptions underlying the RIM are adiabatic and harmonic approximations.
The resulting dynamical matrix t (�q) can be split into a nuclear (ionic) part t I(�q) and a (rigid)
electronic part tE(�q). �q is a wavevector from the first Brillouin zone. The former is of purely
long-range nature and can be calculated using the Ewald summation technique. The latter
contains the long-range and short-range electronic parts and needs further approximations.
Firstly, the electronic density ρ of the crystal is taken as a superposition of rigid ionic electron
densities ρα:

ρα(�r) =
∑
�aα

ρα(�r − �R�a
α). (1)

Here �a and α are the indices of the Bravais and sublattices, respectively. This approximation is
a suitable starting point for dominantly ionic crystals such as SrTiO3 and BaTiO3, in particular
when ion softening in terms of effective (static) charges is taken into account to describe
possible global covalence effects. Secondly, the electron density ρα of the single ions is
treated as spherical symmetric, i.e. ρα(�r) = ρα(r), and finally the total energy E of the system
is approximated by a sum of ionic pair potentials φαβ and self-energies E �a

α of the individual
ions:

E(R) = 1
2

∑
�aα
�bβ

′
φαβ( �R �b

β − �R�a
α) +

∑
�aα

E �a
α, (2)

where R = { �R�a
α} denotes a given lattice configuration and the prime in equation (2) excludes the

self-term (�aα) = (�bβ). Thus, the RIM approximates the rigid, local part of the charge response
and the EPI neglecting its non-rigid character, such as CF and DF, which will be investigated
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in section 2.2 below. The corresponding dynamical matrix [ �t(�q) ]RIM can be split into a long-
range part, accounting for the long-range forces of both the ions and the electrons, and a
short-range part (overlap forces) for the electrons. Whereas the former can be calculated with
the help of the Ewald method, the latter is calculated using density-functional theory (DFT).
For the correlation energy the parametrization in [11] has been used. The electron densities ρα

of the individual ions are determined within the local density approximation (LDA) taking self-
energy corrections (SIC) into account. For the oxygen anions, such as O2−, the Kohn–Sham
equations are made convergent by simulating the crystal environment using a Watson sphere
potential with the depth of the Madelung potential. Global covalence effects are introduced
into the RIM with the help of the concept of ion softening. Here, a tight-binding analysis of
the (first-principles) electronic band structure supplies the (static) effective ionic charges as
extracted from the orbital occupation numbers Qµ of the µ (tight-binding) orbital:

Qµ = 2

N

∑
n�k

|Cµn(�k)|2. (3)

Cµn(�k) stands for the µ component of the eigenvector of band n at wavevector �k in the first
Brillouin zone; the summation in equation (3) runs over all occupied states and N gives
the number of elementary cells in the (periodic) crystal. All investigations in this paper are
performed at the calculated ground state structure R0 = {R0�a

α } which is obtained by minimizing
the crystal energy according to equation (2).

2.2. Modelling of the non-rigid charge response

The non-rigid part of the charge response under atomic displacements is modelled in linear
response theory by electronic degrees of freedom (EDF) of charge fluctuation (CF) and dipole
fluctuation (DF) type, respectively. Due to the ab initio character of the method this approach
allows one to calculate all the electron–phonon and electron–electron coupling coefficients
appearing in the model [2, 10], without any experimental input. Moreover, starting with the
ab initio results of the coupling coefficients, which, of course, have been obtained using certain
approximations, a parametrical variation of these microscopic well defined quantities may be
useful for investigating selectively their influence on the phonon modes and the dielectric
properties of the crystal in our model.

In our description the ionic densities ρα(�r , ζ ) perturbed by the ionic displacement are
considered to depend on a set of EDF ζ = {ζ �a

κ } which, in turn, depend on the actual lattice
configuration R = {R�a

α}; thus, ζ �a
κ = ζ �a

κ (R). κ denotes the localization of the EDF in the
elementary cell and is in predominantly ionic systems located at the ions. In the unperturbed
ground state configuration, R0, there will be no excitations of the EDF (ζ �a

κ (R0) = 0). In the
adiabatic approximation the dependence of the EDF on the ionic configuration is obtained
from the minimization of the total energy E(R, ζ ):

∂ E(R, ζ )

∂ζ
= 0. (4)

Here E(R, ζ ) is the modified crystal energy from equation (2), where φαβ and E �a
α are now

functionals of the perturbed densities ρα(�r , ζ(R)). In the harmonic approximation this finally
results in a dynamical matrix

tαβ

i j (�q) =
[
tαβ

i j (�q)
]

RIM
− 1√

Mα Mβ

∑
κ,κ ′

[
Bκα

i (�q)
]∗ [

C−1(�q)
]
κκ ′ Bκ ′β

j (�q). (5)

The first term in equation (5) is the contribution from the RIM. Mα , Mβ are the masses of the
ions; i , j are Cartesian indices and κ, κ ′ run over the EDF in the elementary cell. The quantities
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�B(�q) and C(q) represent the Fourier transforms of the coupling coefficients as calculated from
the crystal energy:

B �a�b
κβ = ∂2 E(R, ζ )

∂ζ �a
κ ∂ �R �b

β

(6)

and

C �a �b
κκ ′ = ∂2 E(R, ζ )

∂ζ �a
κ ∂ζ

�b
κ ′

. (7)

The derivatives have to be performed at the ground state configuration R0, i.e. ζ = 0. B
describes the coupling between the EDF and the atomic displacement (bare EPI) and C gives
the mutual interaction between the EDF. Again, these quantities can be separated into a long-
range and a short-range part; see e.g. [10]. Moreover, C can be decomposed into a kinetic
one-particle contribution Ckin involving the electronic one-particle excitations (band structure)
and a Hartree and exchange–correlation term Ṽ . Thus, C can be written as

C ≡ Ckin + Ṽ ≡ 	−1 + Ṽ , (8)

where 	 is the (irreducible) polarizability of the electronic system. The inverse of C needed
in equation (5), i.e. the density response function (matrix), is finally given by

C−1 = 	(1 + Ṽ 	)−1 ≡ 	ε−1, (9)

with the dielectric function (matrix)

ε ≡ 1 + Ṽ 	. (10)

Thus, the calculation of the interaction of the EDF has been expressed in terms of 	 and Ṽ .
In this work, two kinds of EDF are discussed. Firstly, charge fluctuations (CF) of a monopole
character to describe a charge transfer under atomic displacements (delocalized mechanism).
The set of CF are further divided into on-site CF: ζκ = Qon

κ localized at the ions, which means
that the occupation of the atomic orbital κ = (n, 1) becomes a degree of freedom, and off-site
CF: ζκ = Qoff

κ . The latter may be located anywhere in the elementary cell outside of the
ions, e.g. along the bond axis, in order to simulate the effect of the atomic displacements on
the covalent part of a bond. On the other hand, the former describe the effect on the ionic
component of binding. Secondly, we consider dipole fluctuations DF: ζκ = pαi , in order to
describe the phonon-induced localized polarization process at the ions (localized mechanism).
In such an anisotropic non-rigid model, the electron density of an ion reads

ρα(�r) = ρα(r)|RIM +
∑

κ

Qκρ
CF
κ (r) + �pα · r̂ρD

α (r). (11)

ρα(r)|RIM is the density used in the RIM for the unperturbed ion following the latter rigidly.
Qκ and �pα are the amplitudes, and ρCF

κ (r) and ρD
α (r) the form factors of the CF and DF,

respectively. r̂ is a unit vector in the direction of �r . In the case of on-site CF the ρCF
κ (r) are

approximated by a spherical average of the orbital densities of the outer ionic shells calculated
in LDA and taking SIC into account. For off-site CF a delta function is used. The dipole
density ρD

α (r) is obtained from a modified Sternheimer method in the framework of LDA-
SIC [10]. The on-site CF–CF submatrix of the matrix 	 can be calculated approximatively
from a tight-binding model of the electronic band structure [2, 5]:

	κκ ′(�q) = − 2

N

∑
nn′
�k

fn′(�k + �q) − fn(�k)

En′(�k + �q) − En(�k)

[
C∗

κn(
�k)Cκn′(�k + �q)

] [
C∗

κ ′n(
�k)Cκ ′n′(�k + �q)

]∗
. (12)
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f , E and C are the occupation numbers, the electronic band structure and the expansion
coefficients of the Bloch functions in terms of the tight-binding functions. When using also
off-site CF in the model, the entire CF–CF submatrix of 	 is calculated using a simplified
parametrized model, sorting the Fourier transform:

	κκ ′(�q) =
∑

�a
	

�0�a
κκ ′

N�a∑
j=1

ei�q( �R�n j
κ −�τκ′ ) (13)

into shells with increasing radius |R�a
κ ′ − �τκ ′ |. �τκ is the vector corresponding to the off-site CF

located at sublattice κ . N�a denotes the number of Bravais vectors �R�n j in the shell �a. Each
shell has the same coefficient 	

�0�a
κκ ′ . Finally, and very importantly, the coefficients 	

�0�a
κκ ′ in

equation (13) must strictly obey a certain sum rule which holds for the charge response of an
insulator [2]: ∑

κ ′

∑
�a

N�a	
�0�a
κκ ′ = 0. (14)

2.3. Dielectric quantities

Within the framework of the above theoretical description of the electronic density response,
an expression for the macroscopic (high-frequency) dielectric constant ε∞(q̂), q̂ = �q/q , can
be derived [5]:

ε∞(q̂) = lim
�q→�0

1/[1 − v(q)χ0(�q)], (15)

with

v(q) = 4π

Vzq2
(16)

and

χ0(�q) =
∑
κ,κ ′

ρκ(�q)
[
C−1(�q)

]
κκ ′ ρ

∗
κ ′(�q). (17)

Vz denotes the volume of the elementary cell and ρκ(�q) is the Fourier transform of ρCF
κ (r) and

r̂ρD
α (r), respectively. The transverse effective charges can be extracted in the long-wavelength

limit from the equation

q̂ · Z T
α · q̂ = lim

�q→�0

[
ε∞(q̂)

[
Zα + i

�q
q2

(∑
κ

ρκ(�q) �Xκα(�q)

)]]
. (18)

Zα is the static charge of ion α, possibly taking ion softening into account. �Xκα(�q) describes
the self-consistent reaction per unit displacement of the EDF as obtained in linear response
theory and is given by

�X(�q) = 	(�q)ε−1(�q) �B(�q) = C−1(�q) �B(�q). (19)

In cubic symmetry the static dielectric constant ε0 is calculated from the expression [5]

ε0 = ε∞ +
∑

σ

�2(σ )

ω2(σ )
. (20)

ε∞ is given in equation (15); σ runs over the optical modes at �q ≡ �0; ω(σ) are the frequencies
of the TO modes and �2(σ ) the corresponding oscillator strengths, generally defined by the
tensor

�2
i j(σ ) = 4π

Vz
pi(σ )p∗

j (σ ), (21)
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which reduces for cubic symmetry to the scalar �2(σ ). In equation (21) the mode-induced
electric dipole moments pi(σ ) are defined by

pi(σ ) =
∑
α, j

Z T
α,i j

ẽα
j (σ )√
Mα

. (22)

Here ẽα
i (σ ) denote the eigenvectors of the zero-wavevector optical modes, with eigenfrequency

ω(σ), and Z T
α,i j is the tensor of the transverse effective charges from equation (18).

Finally, the amplitudes of the phonon-induced EDF in the mode (�qσ) can be calculated
from the expression

δζκ(�qσ) =
[
−

∑
α

�Xκα(�q) · �uα(�qσ)

]
ei�q·τκ (23)

with the ionic displacements

�uα(�qσ) =
(

h̄

2Mαωσ (�q)

)1/2

�eα(�qσ). (24)

ωσ (�q) and �eα(�qσ) are the eigenfrequencies and eigenvectors of the phonon modes (�qσ).

3. Lattice dynamics, lattice instabilities and dielectric properties of SrTiO3 and BaTiO3

3.1. Results within the reference system (RIM)

In the cubic perovskite structure, BaTiO3 passes through a ferroelectric (FE) phase transition as
the temperature is lowered. SrTiO3, which has the same high-temperature structure, behaves
differently and an antiferrodistortive (AFD) transition is found as the temperature drops below
about 105 K [12]. According to the soft mode theory of structural phase transitions the
ferroelectric phase can be related to the high-temperature symmetric structure by the freezing
in of an unstable TO zone-centre (� point) phonon, while the AFD transition is due to a
softening of the lowest-frequency triply degenerate zone-corner R point mode [13]. Since the
RIM has been derived within the harmonic approximation, this corresponds to a simulation
at T = 0. Consequently, if the RIM were able to point to a FE transition, at least the results
for BaTiO3 should show an unstable mode (ω2 < 0) at the � point in the cubic structure,
which, however, is not the case; see figure 1. In such a transverse optical (TO) ferroelectric
mode the Ti ions move along one of the Ti–O bonds and the oxygens in the octahedra vibrate
coherently in the opposite direction; see e.g. [1] and our calculations including CF and DF
in later subsections. However, such an instability is not yet expected in the RIM due to the
lack of a non-rigid charge response related to CF and DF which will be shown to lead to a
destabilization of the ferroelectric mode (FEM).

Note that in this context it has been suggested that the FE transition is interrupted in
SrTiO3 due to quantum paraelectric behaviour, where the zero-point motion of the ions seems
to suppress the long-range FE order [14–16]. So it is very interesting to investigate also
the structural instabilities in SrTiO3. Quite generally, the great sensitivity of ferroelectrics
to chemical compositions, defects, pressure or electrical boundary conditions arises from a
delicate balance between long-range Coulomb forces, favouring the FE state, and short-range
overlap forces, favouring a non-polar structure [17].

Figures 1 and 2 display the results from using the RIM for BaTiO3 and SrTiO3, respectively,
and no FE instability is found. The calculated phonon dispersion is given along the main
symmetry directions � ∼ (1, 1, 1), � ∼ (1, 1, 0) and � ∼ (0, 0, 1). Imaginary frequencies
of unstable modes are plotted as negative numbers. From left to right the displacement patterns
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Figure 1. Calculated results within the RIM explained in the text for the phonon dispersion of
BaTiO3 along the main symmetry directions � ∼ (1, 1, 1),� ∼ (1, 1, 0) and � ∼ (0, 0, 1)

(model 1 in table 4). Imaginary frequencies of unstable modes are plotted as negative numbers.
The classification of the phonon branches via irreducible representations has been managed in the
figure by using different line types: �1: ——; �2: · · · · · ·; �3: – – –; �1: ——; �2: · · · · · ·;
�3– – –; �4: — · —; �1: ——; �2: · · · · · ·; �3: – – –. Below the dispersion curves we have
shown from left to right the two lowest TO modes, the highest LO mode and the two unstable
modes at the R and M point.

in figures 1 and 2 are given for the two lowest TO modes,TO1 and TO2, the highest longitudinal
optic (LO) mode, LO3, as well as the two unstable modes at the R and M points. The R point
mode is the most unstable and already indicates an AFD transition in the RIM. In this mode
the Sr and Ti ions do not move, while the oxygen octahedra rotate about one of the cubic axes
passing through the Ti ion. The rotation is opposite in neighbouring elementary cells in all
cubic directions. The other unstable mode at the M point is similar to the unstable R point
mode, with the exception that the rotation of the octahedra is in the same sense in adjacent
cells along the z-axis.

Due to the missing screening related to the non-rigid charge response in the RIM, the width
of the phonon spectra in figures 1, 2 is too large. For example, the measured LO3 frequency
for BaTiO3 is 21.50 THz [18, 19] as compared with 26.47 THz in the RIM. For SrTiO3 we
have experimentally 23.83 THz [19, 20] and 31.82 THz in the RIM.

As already mentioned, the covalent character of the crystal can be taken into account
globally via ion softening through (static) effective charges. There is considerable scattering
in the results for these charges in the literature depending on the mode of definition (non-
unique) and calculation [7]. As a general rule, partial covalence reduces the amplitude of the
static effective charges in mixed ionic–covalent compounds (ion softening) because the charge
transfer from the cations to the anions is not complete as in the entirely ionic case. The static
effective charges for BaTiO3 in table 1 are close to the first-principles results given in [7, 21].
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Figure 2. Results calculated within the RIM for the phonon dispersion of SrTiO3 along the main
symmetry directions as in figure 1 (model 1 in table 4).

Table 1. The first three columns show the static effective charges, rounded to two digits, as used
in this work for SrTiO3 and BaTiO3. The next column (Mod) gives the resulting lattice constant
in atomic units at minimized energy for these charges. The column headed TB contains the lattice
constants at minimized energy for static effective charges as obtained from a tight-binding analysis
of the electronic band structure [22, 23] and the column headed Exp displays the experimental
results [21, 24].

Static effective charges Lattice constant (a/aB)

Sr/Ba Ti O Mod Exp TB

SrTiO3 2.0 3.44 −1.81 7.26 7.38 7.50
BaTiO3 2.0 2.87 −1.62 7.63 7.57 8.12

The larger ion softening for BaTiO3 as compared with SrTiO3 reduces the overlap repulsion
and weakens the short-range forces, so the tendency towards ferroelectric behaviour should be
increased in BaTiO3.

For a reliable calculation of the phonon frequencies good structural data are very important.
This is less likely if our calculated static effective charges from a tight-binding analysis of the
electronic band structure according to equation (3) are used. For SrTiO3 the tight-binding
parameters given in [22] have been applied and for BaTiO3 those given in [23]. The resulting
lattice constants obtained using these charges in the minimization procedure for the crystal
energy from equation (2) are listed in the last column of table 1. A better agreement with
the experimental lattice constants of SrTiO3 and BaTiO3 is obtained for the set of static
effective charges given in table 1. The magnitude of the latter is in the middle—between
the results obtained from the TB analysis (TBA) and the purely ionic charges. These charges
will be used in all the model calculations presented in this paper. More covalent charges,
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Table 2. Dipole polarizabilities 	α as calculated with the modified Sternheimer method [10]
using the static effective charges from table 1.

SrTiO3 BaTiO3

Sr Ti O Ba Ti O

	α/a3
B 5.67 1.72 13.96 10.52 2.25 13.63

such as those obtained from the TBA, turned out to yield unstable TO modes without any
ferroelectric displacement pattern for both materials. This can be traced back to the fact
that the long-range Coulomb forces favouring ferroelectricity are weakened too much with
increasing ion softening. The favourable aspect of the long-range Coulomb interactions of
driving a FE mode has been addressed in our modelling by simulations accounting for long-
range pair potentials in equation (2) only. In such simulations we obtained for both materials
an unstable TO mode with a FE displacement pattern. On the other hand, the simulations with
exclusively long-range Coulomb forces increase the frequency of the rotational modes at the
R and M points substantially. This leads to the conclusion that the AFD instability is driven
by an increase of the short-range overlap forces. A cancellation between long-range Coulomb
forces favouring the FE transition and short-range forces favouring the AFD transition is a
fundamental characteristic of the perovskites; see also [21].

Finally, we remark that a ferroelectric-like pattern is seen in figures 1, 2 for the highest
LO mode, LO3, and the second lowest TO mode, TO2. The lowest TO mode, TO1, however,
does not show a FE mode pattern. Since the no-crossing theorem for modes belonging to the
same irreducible representation forbids the TO2 mode from dipping below the TO1 mode,
the ferroelectric instability can only be related to the TO1 mode. Therefore the TO1 mode is
expected to take over the FE mode pattern when non-rigid contributions via CF and DF are
introduced into the phonon-induced charge response. This problem will be investigated in the
next two subsections.

3.2. The influence of dipole fluctuations

Two important ingredients are added to the investigation of the FE mode in this subsection.
Firstly, starting from the reference system (RIM) presented in the last subsection, DF as a non-
rigid electronic degree of freedom are additionally allowed for in the modelling. This means
that on each ion the electrons may redistribute under atomic displacements in such a way
that a varying dipole moment is induced on that ion. The latter is calculated with the help of
the modified Sternheimer method within the LDA-SIC approach [10]. Thus no experimental
evidence is taken as an input to the model. Secondly, the anisotropic environment of the
oxygen ions is considered by taking into account an anisotropic dipole polarizability that is
larger along the oxygen–titanium axis (O‖ direction) than in the two directions perpendicular to
this axis (O⊥ direction). Such an anisotropy is consistent with the experimental and calculated
values for the transverse charges Z T for the oxygen which are considerably larger in the
O‖ direction than in the O⊥ direction [7, 24]. Note that, recently, anisotropic DF also have
been found important in our investigations of lattice dynamics and dielectric properties of
the high-temperature superconductors, where the component parallel to the ionic c-direction
perpendicular to the CuO planes dominates by far [5].

Table 2 contains the (isotropic) dipole polarizabilities 	α calculated according to the
Sternheimer method using the static effective charges of the RIM from table 1. The larger
polarizability obtained for Ba as compared to Sr is due to its higher atomic number and the



Lattice dynamics, dielectric properties and structural instabilities of SrTiO3 and BaTiO3 5965

Table 3. The data have been calculated on the basis of the reference model (ab initio RIM with static
effective charges according to table 1) including additionally the (isotropic) dipole polarizabilities
from table 2 (isotropic dipole model). The phonon frequencies ν are given in units of THz. The
transverse charges ZT

α and the macroscopic dielectric constant ε∞ have been calculated according
to equations (18) and (15), respectively.

SrTiO3 BaTiO3

ν(TO1) 3.85 2.88
ν(LO3) 26.68 22.47
ZT(Sr/Ba) 2.60 2.85
ZT(Ti) 3.79 3.21
ZT(O‖) −3.12 −2.52
ZT(O⊥) −1.64 −1.77
ε∞ 3.15 3.06

Table 4. Comparison of the calculated results from three models discussed in the text for
SrTiO3 and BaTiO3 for the phonon frequencies ν in THz, the transverse effective charges ZT

α

and the macroscopic dielectric constant ε∞ with corresponding experimental values. Model 1 is
the RIM reference model, model 2 includes anisotropic DF only and model 3 describes the final
scenario with anisotropic DF and CF as screening processes. The experimental data for the phonon
frequencies are from [18–20], those for ZT

α from [24] and those for ε∞ from [19]. 	α denotes the
dipole polarizability in units of a−3

B , η = 	O⊥/	O‖ is the ratio of the anisotropy for the oxygen
polarizability and γ is a model parameter which describes the positions of the centres of the off-site
CF; see figure 6. Imaginary frequencies of unstable modes are given as negative numbers.

SrTiO3 BaTiO3 Experiment

Model 1 2 3 1 2 3 SrTiO3 BaTiO3

ν(TO1) 4.77 −2.27 −2.73 4.20 −3.39 −5.35 — —
ν(TO2) 16.99 5.13 5.22 14.10 3.29 3.40 5.25 5.43
ν(TO3) 25.83 22.92 19.97 22.00 19.59 16.17 16.34 14.60
ν(LO1) 7.95 4.90 5.03 6.64 3.29 3.35 5.13 5.40
ν(LO2) 24.76 16.56 14.36 20.58 13.54 12.47 14.21 14.03
ν(LO3) 31.82 26.63 23.81 26.47 22.16 18.38 23.83 21.50
ZT(Sr/Ba) 2.00 2.09 2.46 2.00 2.38 2.64 2.4 2.9
ZT(Ti) 3.44 6.58 5.53 2.87 6.03 5.44 7.0 6.7
ZT(O‖) −1.81 −3.39 −4.04 −1.62 −2.87 −3.68 −5.8 −4.8
ZT(O⊥) −1.81 −2.64 −1.97 −1.62 −2.77 −2.20 −1.8 −2.4
ε∞ 1.00 4.30 4.54 1.00 5.06 5.48 5.18 5.24

	O‖ — 33 18.40 — 42 20.00 — —
	O⊥ — 11 13.96 — 14 13.63 — —
η (%) — 33.33 75.87 — 33.33 68.15 — —
γ (%) — — 23.60 — — 21.00 — —

larger Ti polarizability of BaTiO3 is consistent with a stronger electron transfer into the Ti 3d
band in the case of BaTiO3 as compared to SrTiO3 leading to a stronger ion softening, as could
be extracted from table 1. A calculation of the phonon dispersion of BaTiO3 and SrTiO3 using
the dipole polarizabilities given in table 2 generates a global renormalization of the frequencies
as compared with those of the ionic reference system displayed in figures 1 and 2, respectively,
towards the experimental values. For example, the highest LO mode in SrTiO3 is decreased
from 31.82 THz in the RIM (figure 2) to 26.68 THz (table 3), which can be compared with the
experimental value of 23.83 THz (table 4). In the case of BaTiO3 we obtain a decrease from
26.47 in the RIM (figure 1) to 22.47 THz (table 3), while the experiments yield 21.50 THz
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Figure 3. Calculated results for the phonon dispersion of SrTiO3 along the main symmetry
directions, as in figure 2, including additionally anisotropic dipole polarizabilities given by the
ratio 	O‖/	O⊥ = 33a3

B/11a3
B (model 2 in table 4).

(table 4). Moreover, we find that the lowest TO mode at �, TO1, is strongly renormalized; see
figures 1 and 2 and table 3, respectively. However, TO1 does not become unstable at the �

point and the TO1 displacement pattern does not yet take over the ferroelectric mode behaviour.
Comparing the transverse charges, Z T, in table 3 with the static charges in table 1, we have
indications that the dipole polarizabilities might drive the model in the right direction. The
transverse charges of oxygen display the correct anisotropy (ZT

O‖ > Z T
O⊥) despite the isotropic

dipole polarizability due to the anisotropic environment. However, the magnitudes of ZT(O‖)
are too small as compared to the experimental values given in table 4. The same is true for the
calculated macroscopic dielectric constant ε∞; see tables 3 and 4.

In order to investigate the influence of an anisotropic dipole polarizability on the FE
mode, we treat the polarizabilities 	O‖ and 	O⊥ parallel and perpendicular to the O–Ti axis
as free parameters. The results for the phonon dispersion of SrTiO3 and BaTiO3 are displayed
in figures 3 and 4 and in table 4 (model 2). Only with unrealistic high polarizabilities for
	O‖ (compare the corresponding values in table 4 with those from the Sternheimer method
in table 2) were we able to destabilize the TO1 mode causing it to show a FE mode pattern;
see figures 3 and 4. The increased polarizability in the system is also reflected in the larger
transverse charges, Z T

α (table 4), which are a measure of the change of electronic polarization
under ionic displacements (with zero macroscopic electric field). Moreover, ε∞ is increased
as compared to the isotropic case in table 3 and in better agreement with the experiment. An
improved knowledge of Z T

α and ε∞ is also important for a better description of the long-range
effect of the Coulomb interactions on the lattice dynamics of ionic crystals and directly related
to the LO–TO splitting. Summarizing, in order to simulate a FE transition with DF only, an
unrealistic large dipole polarizability 	O‖ had to be admitted. Even in this case, Z T(O‖) and
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Figure 4. Calculated results for the phonon dispersion of BaTiO3 along the main symmetry
directions, as in figure 1, including additionally anisotropic dipole polarizabilities given by the
ratio 	O‖/	O⊥ = 42a3

B/14a3
B (model 2 in table 4).

ε∞ are underestimated, suggesting a lack of other polarization processes. Thus, we conclude
that the localized screening mechanism via DF, while favouring FE mode behaviour, should
be supplemented by a delocalized mechanism, which in our microscopic modelling is realized
in terms of CF. The role of CF in addition to DF is investigated in the next subsection.

3.3. The influence of charge fluctuations

According to section 2.2, CF are modelled as fluctuating charge centres located either at an
atomic orbital with a certain form factor calculated in the LDA-SIC (on-site CF) and/or at any
arbitrary point in the unit cell, e.g. on the Ti–O bond (off-site CF), with a δ-function as the
form factor.

Before presenting the results of our simulations, some typical scenarios for a delocalized
mechanism are considered in figure 5 from a qualitative point of view. Here five possible
locations of CF (which can be considered to describe locations on the oxygen–titanium chain)
are displayed. Figure 5(a) illustrates a purely covalent system with ionized atoms of the same
kind. The horizontal arrows symbolize the displacements of the ions and the vertical arrows
indicate the location of the CF centres at the middle of the bond axis. In this case, the region
of compressed bonds gets more attractive for an electron (a vertical arrow down means an
electron flow into the centre, δQκ < 0). Due to overall charge conservation these electrons
have to come from the centre on the elongated bond (a vertical arrow up means an electron
flow out of the centre, δQκ > 0). However, from the symmetry of the chain, the charge
transfer (CT) has no unique direction, i.e. the CT in positive and negative directions along the
chain are degenerate. This symmetry is broken by displacements in the partly ionic case shown
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Figure 5. Various scenarios for locating charge fluctuations (CF) along the Ti–O chain as discussed
in the text. Horizontal arrows indicate the displacements of the ions. Arrows pointing upward or
downward, respectively, mean an electron flow away from (δQ > 0) or towards (δQ < 0) the
location of the centre of the CF, respectively.

in figures 5(b)–(e), where positive and negative ions alternate, like in the Ti–O chain. Even
without CF the rigid displacements of the ions, e.g. in the ferromode, result in a net electron
shift in the direction of the displacement of the negative ion (e.g. oxygen). The direction of the
CT resulting from the CF, however, is expected to depend on how closely the CF centres are
located relative to the ions, say the oxygen and titanium ions. In figure 5(b) the CF centres are
assumed to be located symmetrically close to the ground state position of the repulsive oxygen
ion. This causes δQκ > 0 on the shorter bond. Since the electrons will pass via the attractive
titanium ion in order to reach the centre of the elongated bond, the broken symmetry has
lifted the degeneracy of the direction of the charge flow. Thus, the non-rigid phonon-induced
electron flow is superposed in phase on the rigid charge shift of the oxygen ions in this case.
This is expected to result in an increased change of polarization and correspondingly in a higher
transverse charge, as found experimentally for SrTiO3 and BaTiO3. The opposite is true in the
situation sketched in figure 5(c). Here, the CF centres are assumed to be symmetrically close
to the attractive titanium ion. This results in δQκ < 0 on the compressed bond. Since, as in
the previous case, the electrons are expected to pass via the attractive titanium ion to reach the
centre of the shorter bond, the induced electron flow is out of phase with the rigid charge shift
of the oxygen ion. As a consequence, the change in polarization on the transverse charges
should decrease. From this reasoning it seems likely that a favourable situation for modelling
an increase of the effective charges and a ferroelectric instability is generated by assuming the
CF centres to be close to the oxygen ion like in figure 5(b). However, in such a model the
electrons would move from the compressed bond into the elongated band, which is not realistic.
Such a difficulty is not present in the models displayed in figures 5(d) and (e). In figure 5(d)
only on-site CF centres located at the ions are involved. As a result, the electrons move along
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Figure 6. Localization of the off-site CF centres expressed by the quantity γ as discussed in the
text. The arrows have the same meaning as in figure 5.

the shorter bond to the attractive titanium ions. However, from symmetry arguments it can be
shown that on-site CF are not excited in the TO modes at the � point. Finally, figure 5(e) shows
a simple solution to the problem. Here two CF centres are located on each bond. Analogously
to the case in 5(b), this results in δQκ > 0 on the side where the displacement of the repulsive
oxygen occurs. However, unlike the case in 5(b), the electrons do not have to move to the
elongated bond; instead they are transferred to the centre close to the attractive titanium ion.
Moreover, this non-rigid electron flow is in phase with the rigid charge shift of the oxygen,
leading to an increase of the change of polarization. Note that the scale on which the CT takes
place in direct space is an important factor for the magnitude of the displacement-induced
changes of the polarizability and can be modelled by the location of the off-site centres with
respect to the ions; see the parameter of localization γ in figure 6.

In the following, on-site and off-site CF will be modelled. On-site CF do not couple with
the FE mode, but have an influence on phonon modes of other symmetry types and,of course, on
the dielectric properties such as the macroscopic dielectric constant ε∞ [5, 10]. A comparison
between the specific influence of DF and CF on the FE instability is performed using a model
constructed in parallel to figure 5(b) as far as the off-site CF centres are concerned. Then, a
second model analogous to that of figure 5(e) will be investigated. While the numerical results
obtained for both models are quite similar, model 5(e) should be preferred because it allows
for a correct interpretation of the phonon-induced charge transport as discussed above.

The crucial parameter for the generation of a FE mode by DF in the last subsection was
the size of the anisotropy of the dipole polarizability. The latter will be measured by the ratio

η = 	O⊥
	O‖

, (25)

with 	O⊥ and 	O‖ the polarizabilities of oxygen in the directions perpendicular and parallel
to the Ti–O chain. Our investigations in section 3.2 have demonstrated that only an unrealistic
large 	O‖ , i.e. small η, resulted in a FE instability. On the other hand, from our qualitative
arguments in context with figures 5(b) and (e) we expect off-site CF to enhance the phonon-
induced changes in polarizability and favour ferroelectric behaviour. This conjecture will be
examined by means of quantitative calculations in the following. The relevant parameter which
measures the localization of the off-site CF centres and thus the scale on which the CT takes
place can be defined in terms of the quantity

γ = τa

τTi
, (26)

where τa refers to the distance of the off-site CF centre δQoff
a (figure 6) from the nearest oxygen

ion. τTi measures the nearest neighbour distance between oxygen and titanium along the chain.
Thus, as shown in figure 6, γ = 0% means that δQoff

a is on oxygen and γ = 100% refers to the
case where δQoff

a is on titanium. For symmetry reasons a second centre δQoff
b has to be located

on the next Ti–O bond at the same distance from the oxygen. Thus, the one-centre-per-bond
model of figure 5(b) can be realized with Qoff

a and δQoff
b . Adding δQoff

c and δQoff
d as in figure 6

yields the two-centre-per-bond model of figure 5(e).
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Table 5. Values for the model polarizability 	
�0�a
κκ ′ calculated according to equation (13) from the

tight-binding polarizability, as discussed in the text.

	
�0�0
κκ ′ (meV−1) SrTiO3 BaTiO3

Ti 3d 167.3874 369.4884
O 2s 2.5269 2.6955
O 2p 58.7979 135.7567
Ti 3d–O 2s −0.9172 −1.2150
Ti 3d–O 2p −26.9807 −60.3664
O 2s–O 2s −0.0011 0.0009
O 2p–O 2p −0.5191 −1.8439
O 2s–O 2p −0.0391 0.0517
(O 2s–O 2p)on −0.3709 −0.6863

The calculation of the on-site polarizabilities according to the CF–CF submatrix of	κκ ′(�q)

from equation (12) is performed following equation (13), i.e.

	
�0�0
κκ ′ = 1

N�0
	κκ ′(�q = �0). (27)

Here, a nearest neighbour approximation has been assumed and for the actual calculations the
band structures of SrTiO3 and BaTiO3 in the tight-binding parametrization according to [22, 23]
are used. From these calculations—see table 5—we find that the diagonal matrix elements
	(Ti 3d–Ti 3d), 	(O 2p–O 2p) and the off-diagonal element 	(Ti 3d–O 2p) dominate by
far. The large off-diagonal element reflects the importance of the change of the Ti 3d–O 2p
hybridization under perturbation of the system, in particular for BaTiO3, because from our
results we see that 	(Ti 3d–O 2p) is more than twice as large for BaTiO3 as for SrTiO3.
Similar observations are reported in [7, 19, 25] in context with the calculation of transverse
charges in perovskites. In order to guarantee that our modelling is consistent with the charge
response of an insulator, the sum rule from equation (14) must be strictly fulfilled. This
cannot be true exactly, in a nearest neighbour approximation, so we adapt some of the matrix
elements to readjust this sum rule. The off-site CF in our model must also be chosen to obey
this sum rule. Fixing 	(a) as the diagonal term of the off-site CF centre δQoff

a , and taking
	(a) = −2	(a–O 2p), the missing matrix element 	(a–Ti 3d) is obtained from the sum
rule (14), i.e. 	(a) + 	(a–Ti 3d) + 	(a–O 2p) = 0.

Our numerical simulations in figures 7 and 8 for SrTiO3 have been performed for the
one-centre-per-bond model according to figure 5(b). Remarkably, simulations suppressing
DF completely, using CF alone, did not show a FE instability. Thus, contributions from the
localized screening mechanism via DF are necessary for the instability. For the calculations
shown in figure 7 the calculated isotropic Sternheimer polarizabilities from table 2, i.e. η =
100%, are used, varying through γ the localization of the off-site CF centres, while in
figure 8 γ (=20%) is fixed and the anisotropy of the DF is varied via η taking the Sternheimer
result for 	O⊥ . At the right-hand end of the horizontal axis the parameters of the model are
the same in the two figures. A first inspection of the two figures shows that variations of the
parameters γ and η produce almost the same effects. Both increasing the anisotropy of the
dipole polarizability and decreasing the distance of the off-site CF centre from the oxygen ion
result in FE instability (ν(TO1) = 0) for certain critical parameters γ , η. At this point the
static dielectric constant ε0 (equation (20)) diverges and the oscillator strength of the FE mode
(�2

TO1, according to equation (21)) is very large. Moreover, the magnitudes of the phonon-
induced DF, δpO‖ , and the off-site CF, δQoff

a , as calculated from equation (23) reach their
maximum values with the electrons moving in phase with the rigid charge shift accompanying
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Figure 7. Various physical quantities of SrTiO3 as a function of the localization of the off-site
CF centre γ from equation (26) (figure 6), with a fixed ratio η from equation (25) (in per cent)
of anisotropy of the dipole polarizabilities 	O⊥ and 	O‖ of oxygen (η = 	O⊥/	O‖ = 100%).
For 	O⊥ and 	O‖ the (isotropic) Sternheimer values of table 2 have been used. The displacement
patterns for TO1 and LO3 have been calculated for a fixed γ = 17.5%. The experimental results for
measurable quantities shown in the figure are explicitly indicated. The behaviours of the following
quantities calculated as a function of γ are plotted: frequencies ν(LO3)/10 THz [19], ν(TO1)/THz;
the macroscopic dielectric constant ε∞ from equation (15) [19]; the static dielectric constant ε0
from equation (20) [14]; transverse charges ZT

α from equation (18) [24]; the oscillator strength
�2(TO1)/THz2 from equation (21) [26]; dipole fluctuations δpO‖/10−2aB from equation (23);

off-site charge fluctuations δQoff
a /10−3 from equation (23).

Figure 8. Various physical quantities for SrTiO3, as in figure 7, as a function of η with fixed
γ = 20%. The displacement patterns have been calculated for fixed η = 70.5%. For 	O⊥ the
calculated Sternheimer value of table 2 has been used.

the displacement of the oxygen ions. In this way, the change of the polarizability is enhanced
and the FE transition is generated. As a result we can state that DF and off-site CF interfere
constructively to produce the FE instability.
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Figure 9. Calculated results for the phonon dispersion of SrTiO3 along the main symmetry
directions, as in figure 2, including additionally anisotropic DF and CF as explained in the text
(model 3 in table 4).

In the final part of this subsection we present the results for SrTiO3 and BaTiO3 as
calculated with the more realistic two-centre-per-bond model (figure 5(e)), taking more realistic
dipole polarizabilities 	O‖ into account. Of course, the insulator sum rules for the charge
response have to be satisfied in these calculations. The parameters η and γ have been chosen to
give reasonable results for the dielectric properties and the phonon frequencies. The calculated
data are collected in table 4 (model 3) and compared with the experiments. The resulting
phonon dispersion curves are displayed in figure 9 (SrTiO3) and figure 10 (BaTiO3). For
SrTiO3 as well as for BaTiO3 we find FE and AFD instabilities. However, for SrTiO3 the
most unstable mode is at R, corresponding to an AFD transition as seen in the experiments,
while for BaTiO3 the FE mode at � (TO1) is the most unstable, signalling a FE transition, also
in agreement with the experimental facts. Moreover, in the case of SrTiO3 the FE instability
no longer extends to the zone edges of the Brillouin zone (figure 9) which, however, is the
case for BaTiO3 (figure 10) in agreement with recent calculations using DFPT [1]. Thus, the
phase space of the ferroelectric instability is reduced in SrTiO3 as compared to BaTiO3. An
analogous result has been obtained in [27] by comparing SrTiO3 with ferroelectric KNbO3.

3.4. The phonon density of states, volume effects and FE mode at the Brillouin zone boundary

Figures 11 and 12 display the phonon densities of states of SrTiO3 and BaTiO3 as calculated
with model 3 from table 4 corresponding to the phonon dispersion curves shown in figures 9
and 10, respectively. The partial densities of states of the ions Sr(Ba), Ti, O⊥ and O‖ are also
given and are indicated by different line types. The two most prominent peaks in the spectra
relate to the nearly dispersionless part of the branches resulting from the TA, LA and LO2
modes. The main spectrum ends with contributions around the TO3 mode. The part of the
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Figure 10. Calculated results for the phonon dispersion of BaTiO3 along the main symmetry
directions, as in figure 1, including additionally anisotropic DF and CF as explained in the text
(model 3 in table 4).

Figure 11. The phonon density of states D(ν) and partial densities of states Dα(ν) of SrTiO3 as
calculated with model 3 of table 4. The various densities of states are indicated by different line
types: ——, D(ν); · · · · · ·, DSr(ν); - - - -, DTi(ν); — · —, DO⊥(ν); — · · —, DO‖(ν).

spectrum beyond the frequency gap contains the modes with frequencies starting with LO3 and
ends with the (three-dimensional) oxygen breathing mode at the R point which is the highest
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Figure 12. As figure 11, but for BaTiO3.

Table 6. The frequency of the TO1 mode and the R point mode of SrTiO3 in model 3 of table 4
at different lattice constants a. a0 is the calculated lattice constant at minimal energy from table 1,
displayed in the fourth column. SRF(+,−) means that short-range overlap forces are included
(+) or excluded (−), respectively. Imaginary frequencies of unstable modes are given as negative
numbers.

SRF(+) SRF(−)
SrTiO3

a/a0 (THz) 100% 95% 100% 95%

ν(TO1) −2.73 4.23 −33.85 −32.37
ν(R) −4.66 −6.73 7.95 8.60

mode in the spectra, where all the oxygens vibrate in phase against the titanium. Interestingly,
in the HTSC, similar modes, the high-frequency Cu–O breathing modes, have been shown to
generate a strong electron–phonon coupling when these materials are doped with holes; see
e.g. [4, 5] and references therein.

We now briefly address the effect of a compressed cubic structure on the FE mode
behaviour. From the results given in table 6 we find that the FE TO1 mode is considerably
stabilized under compression in the case where long-range as well as short-range forces are
included in the calculation. Such an effect is absent when short-range forces are excluded. In
this case the stabilizing effect mediated by the increase of the short-range overlap forces in the
compressed structure is switched off and the compression hardly shows any stabilizing effect.
The large negative numbers for ν(TO1) of course result from the exclusion of the short-range
forces, demonstrating again the favourable aspect of the long-range Coulomb forces for the
FE instability. In contrast, the R point mode shows the favourable aspect of the short-range
forces for the AFD instability.

As the last topic of this paper, we investigate the behaviour of the FE mode of BaTiO3 along
the Brillouin zone boundary. Figure 13 shows a plot of the unstable ‘frequency’ behaviour
and the corresponding displacement patterns of the FE TO1 mode of BaTiO3 in model 3
of table 4 at the Brillouin zone boundary along the Z direction from X = π/a(1, 0, 0) to
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Figure 13. The behaviour of the ferroelectric TO1 mode of BaTiO3 as calculated with model 3 of
table 4, along the Brillouin zone boundary. The displacement patterns are shown from left to right
in the following order: X point; halfway from X to M; M point; halfway from M to R; R point.
X = π

a (1, 0, 0); M = π
a (1, 1, 0); R = π

a (1, 1, 1).

M = π/a(1, 1, 0) and the T direction from M to R = π/a(1, 1, 1). It can be seen that the
FE instability (ω2(�q) < 0) persists along the entire Z direction and disappears along T toward
the R point. Taking the results for the instability from figure 10 into account, the FE mode
remains unstable on the �–M–X plane throughout the whole Brillouin zone. The extension
of the region of instability into the third dimension can be extracted from the dispersion in
the T direction, where the FE mode is stabilized after roughly 15% when going from M to
R. Consequently, the FE mode is unstable between three pairs of flat surfaces containing the
� point that are parallel to the faces of the Brillouin zone cube. Such a behaviour, found in
our microscopic model for BaTiO3, has been previously reported in [28] for KNbO3 and later
also for BaTiO3 [29] in the framework of first-principles lattice dynamics calculations and
it was pointed out that this behaviour corresponds to chain instabilities in real space. From
our calculations along the T direction, the thickness of the slab-like region of instability can
be estimated to be about 0.47 Å−1 in reciprocal space. From the displacement patterns in
figure 13 we learn that at all points shown the mode is polarized along the z-axis with Ti ions
vibrating against the oxygens. At the M point, for example, the unstable mode is dominated
by displacements of mostly Ti against the chain oxygen O‖. The phonon phase factor, ei�q· �R�a

,
in the z-direction ∼(0, 0, 1) is one in this case. Thus, the Ti and O‖ ions in the elementary
cells will be coherently displaced along an infinite (0, 0, 1) chain. As soon as the �q vector
assumes a z component when going from M to R, the coherence of the displacements will be
reduced and a finite length of correlation will be reached when the mode becomes stable along
the T direction. So, the minimal correlation length of the displacements for finding an unstable
mode can be estimated from our calculation as 2π/0.47 Å−1 ≈ 13.5 Å, which compares quite
well with an estimate of 16 Å in [29]. Analogously, these statements hold true for all the
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�q vectors in the �–M–X plane with the corresponding modes, because the phase factor along
the (0, 0, 1) direction is still one. However, certain differences may occur. For example, at
the M point and for �Ra = (a, 0, z) we have ei�qM· �R�a = −1, i.e. two neighbouring chains of
elementary cells are oscillating with opposite phase, resulting in a disappearing macroscopic
polarization. At the X point and for �R�a = (a, y, z), ei�qX R�a = −1 and the coherent chains
of elementary cells, as for M, are changed to coherent y–z planes. Finally, the ferroelectric
region spreads into all directions in direct space as the �q vector approaches the � point.

4. Summary and conclusions

An approximate description of the electronic density response within a microscopic model,
previously used successfully for the high-temperature superconductors, has been applied
to the lattice dynamics, dielectric properties and in particular the structural instabilities of
the perovskites SrTiO3 and BaTiO3 which crystallize in the parent structure of the HTSC.
A comparative study has been performed and reasonable agreement with the experimental
evidence has been achieved. In all cases where a comparison of our calculated results with
available full first-principles calculations is possible, our findings are consistent with the latter.
At the same time, the numerical effort in our approach is considerably reduced,a direct physical
interpretation can be given and, if necessary as for the HTSC, an extension to a non-adiabatic
charge response is possible.

Starting from an unbiased ab initio RIM the influences of DF and CF representing non-rigid
localized and delocalized electronic polarization processes, respectively, have been studied
explicitly. We have found a larger ion softening of BaTiO3 as compared with SrTiO3 via an
enhanced hybridization tending to reduce the overlap repulsion and softening the short-range
forces, with the result that ferroelectric behaviour should be enhanced in BaTiO3. However, no
FE instability is found in the RIM; only the rotational soft mode related to the AFD transition
in SrTiO3 is seen. We also have addressed the favourable aspect of the long-range Coulomb
interactions of driving a FE mode and the fact that an increase of the short-range forces favours
the AFD transition.

Localized anisotropic DF as well as delocalized polarization processes via off-site CF,
simulating changes of the Ti 3d–O 2p hybridization under atomic displacements, interfere
constructively in the FE instability. From a calculation of the off-diagonal matrix elements of
the electronic polarizability we see that the changes of hybridization are considerably stronger
in BaTiO3. A FE transition with DF exclusively is only possible with anisotropic dipole
polarizabilities and under the assumption of an unrealistic large oxygen polarizability 	O‖
along the Ti–O axis. On the other hand, simulations suppressing DF completely and using
CF solely did not show any FE instability. Only an intrinsic interplay of the two screening
mechanisms generates ferroelectric behaviour in the particular material.

Moreover, our calculations have shown that changing Sr to Ba has profound effects on the
character of the phonon dispersion and the unstable modes. In agreement with the experimental
situation, our findings extracted from the calculations are that in SrTiO3 the most unstable mode
is the rotational mode at R corresponding to an AFD transition, while in BaTiO3 the FE mode
at � is the most unstable. At the same time, the phase space of the FE instability is greatly
reduced in SrTiO3 as compared to BaTiO3. An analogous result has been observed in first-
principles calculations by comparing SrTiO3 with ferroelectric KNbO3. In BaTiO3 our studies
show that the region of instability lies between three pairs of nearly flat planes which are
parallel to the surfaces of the Brillouin zone cube. Such a behaviour has also been reported
from full first-principles calculations and it was pointed out that this feature corresponds to



Lattice dynamics, dielectric properties and structural instabilities of SrTiO3 and BaTiO3 5977

chain instabilities in real space. Besides the phonon dispersion and the dielectric properties,
we have also investigated the phonon densities of states with the oxygen breathing mode at
the R point at the high-frequency end of the spectra. Similar high-frequency oxygen breathing
modes in the HTSC have recently generated a great deal of interest experimentally as well as
theoretically, because of the strong electron–phonon coupling of these modes. Finally, we find
that the FE instability disappears in the compressed cubic phase.
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[6] Falter C, Hoffmann G A and Schnetgöke F 2002 J. Phys.: Condens. Matter 14 3239
[7] Ghosez Ph, Michenaud J P and Gonze X 1998 Phys. Rev. B 58 6224
[8] Harrison W A 1980 Electronic Structure and the Properties of Solids (San Francisco, CA: Freeman)
[9] Ghosez Ph, Gonze X, Lambin Ph and Michenaud J P 1995 Phys. Rev. B 51 6765

[10] Falter C, Klenner M, Hoffman G A and Schnetgöke F 1999 Phys. Rev. B 60 12051
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